

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Refrigeration & Air Conditioning (16ME325)

Course & Branch: B.Tech – Agricultural Engineering

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R16

<u>UNIT –I</u> **Introduction**

1	a	Define the following terms.	L1	C01	6M
		i).Refrigeration ii).Heat Engine			
	b	Explain the working of Bell-Coleman cycle air refrigeration with P-v and	L2	C02	6M
		T-S diagrams.			
2	a	Define Unit of Refrigeration	L1	C01	5M
	b	Explain the working of a Reversed Carnot cycle of refrigeration with P-V	L5	C01	7M
		and T-S Diagrams.			
3	a	Define C.O.P	L1	C03	5M
	b	With neat sketch Explain the working of Simple air refrigeration system	L2	C01	7M
4	a	What are the limitations of Carnot cycle of refrigeration	L1	C04	5M
	b	Describe Boot strap air refrigeration system, with a schematic diagram	L1	C01	7M
		and show the cycle on T-S Diagram.			
5	a	State the applications of refrigeration	L3	C02	6M
	b	Explain, with a neat sketch the working principle of Regenerative Air	L5	C05	6M
		refrigeration system.			
6	a	What is the Necessity of refrigeration	L1	C03	6M
	b	Describe with a neat sketch a Reduced ambient air refrigeration system	L1	C01	6M
7		In a refrigeration plant working on Bell Coleman cycle, air is compressed	L5	C02	12M
		to 5 bar from 1 bar. Its initial temperature is 10 ° C. After compression,			
		the air is cooled up to 20 °C in a cooler before expanding to a pressure of			
		1 bar. Determine the theoretical C.O.P of the plant and net refrigerating			
		effect. Take $Cp = 1.005 \text{ KJ/Kg K}$ and $Cv = 0718 \text{ KJ/Kg K}$.			
8		A refrigerator working on Bell Coleman cycle operates between pressure	L5	C03	12M
		limits of 1.05 bar and 8.5 bar. Air is drawn from the cold chamber at 10 $^{\circ}$			
		C, compressed and then it is cooled to 30 ° C before entering the			
		expansion cylinder. The expansion and compression follows the law PV			
		^{1.3} = constant. Determine the theoretical C.O.P of the system.			
9		An air refrigerator working on Bell Coleman cycle takes the air into the	L1	C01	12M
		compressor at 1 bar and -7 °C and is compressed isentropically to 5.5 bar			
		and it is further cooled to 18°C at the same pressure. Find the C.O.P of the			
		system if (a). The expression is isentropic (b). The expression follows the			
		1 V 1	I .		

2020-21

	law PV $^{1.25}$ = constant. Take γ = 1.4 and Cp = 1 KJ/Kg K.		
10	An air refrigerator used for food storage provides 50 tons of refrigeration. The temperature of air entering the compressor is 7 ° C and the temperature before entering into expander is 27 ° C .Assuming 30 % more power is required than theoretical, find (a).Actual C.O.P of the cycle (b).KW capacity required to run the compressor.	C02	12M

<u>UNIT -II</u> <u>Vapour Compression Refrigeration System</u>

1	a		Ū	es of vapour c	ompression	refrige	ration	system over	L1	C03	6M
		air refrigerat									
	b	With a neat sketch, explain the working principle of vapour compression					L5	C01	6M		
		refrigeration system.									
2	a	State the fun	ctions of e	xpansion device	ce.				L1	C02	6M
	b	Construct Pr	ressure – E	nthalpy (p-h)	chart of Vap	or com	pressi	on cycle	L6	C01	6M
3		The tempera	ture limits	of an ammoni	a refrigeration	ng syste	em are	e 25° C and -	L5	C04	12M
		10° C. If the	gas is dry	at the end of	compression	, calcul	late th	e coefficient			
		of performa	nce of the	cycle assum	ing no und	er coo	ling o	of the liquid			
		ammonia. Us	se the follo	wing table for	properties o	f amm	onia.				
		Temperatur		uid Heat	Latent Hea	t	-	d Entropy			
		С	(K	(j / kg)	(Kj/kg)			kg K)			
		25		298.9	1166.9			1.1242			
		-10		135.37	1297.6	8	(0.5443			
4		A Vapour co	ompression	refrigerator	works betwe	en the	pressi	ure limits of	L5	C01	12M
		60 bar and 2	5 bar. The	working fluid	is just dry a	it the e	nd of	compression			
		and there is	no under	cooling of th	e liquid bef	ore the	expa	nsion valve.			
		Determine (i	i). C.O.P o	of the cycle (i	i). Capacity	of the	refrig	erator if the			
		fluid flow is	at the rate	of 5 kg/min.							
		Pressure	Temperat	Enthalpy (k	(j / kg)	Entro	ру (К	(j / kg K)			
		(Bar)	ure ° C	Liquid	Vapour	Liqui		Vapour			
		60	295	151.96	293.29	0.5		1.0332			
		25	261	56.32	322.58	0.2	26	1.2464			
5		28 tonnes ic	ce from a	nd at 0 ° C i	s produced	per da	y in a	an ammonia	L5	C02	12M
		28 tonnes ice from and at 0 ° C is produced per day in an ammonia refrigerator. The temperature range in the compressor is from 25 °C to -15 °									
		•	-	and saturated	-						
		-	-	d. There is no			-				
		-		neoretical, Cal	-	_		Ū			
				properties of a	-		-				

		Temperatu	ur Enthalpy	Enthalpy (kj / kg)		Entrop	y (Kj/	kg K)			
		e o C	Liquid	Vap	our	Liquid		Vapour			
		25	298.9	14	165.84	1.12	242	5.0391			
		-15	112.34	. 14	126.54	0.45	572	5.5490			
6		A refrigera	ntion machine	using R-1	12 as refu	rigerant	operate	es between the	L6	C01	12M
		pressures 2	2.5 bar and 9 b	ar. The co	ompressio	n is isen	tropic	and there is no			
		undercoolii	ng in the condo	enser. The	vapour i	s in dry	saturat	ed condition at			
		the beginni	ng of the comp	pression. I	Estimate 1	theoretic	al C.O.	P. If the actual			
		C.O.P is 0.	.65 of theoretic	cal valve,	calculate	the net	cooling	g produced per			
		hour. The r	efrigerant flow	is 5 kg/m	nin. Prope	erties of 1	refriger	ant are			
		Pressur	Temperature	Enthalpy	y (kj / kg)	E	ntropy (of saturated			
		e	° C	Liquid	Vapo	our v	apour, k	ij / kg K			
		(Bar)									
		9	36	70.55		1.8		0.6836			
		2.5	-7	29.62		4.5		0.7001			
7			azetrope? Give			indicate	e its imp	portance.	L1	C04	12M
8	a		esirable proper						L1	C05	6M
	b		lifferent refrige						L1	C01	6M
9		-	-	•	-		-	essure limits of		C02	12M
		5.3 bar and	2.1 bar. The v	apour is s	super-hea	ted at the	e end o	of compression,			
		its tempera	ture being 37	° C .The	vapour is	super-h	eated b	y 5 ° C before			
		entering the	e compressor.								
		If the spec	cific heat of s	uper-heate	ed vapou	r is 0.63	3 kj /	kg k, find the			
		coefficient	of performanc	e of the pl	lant. Use t	the data	given b	elow			
		Pressure (E	Bar) Temperat	ure ° L	iquid He	eat (kj	Later	nt Heat (kj/kg)			
			С		kg)						
		5.3	15.		56.1			144.9			
10		2.1	-14		25.1			158.7	1.0	G02	103.5
10		Sketch and	explain a two-	stage case	cade refrig	geration	system	•	L2	C03	12M

<u>UNIT –III</u> **Other Refrigeration Systems**

1	a	Advantages of vapour absorption refrigeration system over vapour	L5	C02	6M
		compression refrigeration system.			
	b	Define the terms nozzle efficiency and entrainment efficiency in steam jet	L1	C01	6M
		refrigeration system.			
2	a	Discuss properties of refrigerant and absorbent combination used in vapour	L6	C03	6M
		absorption system			
	b	State the advantages and limitations of VAR	L1	C05	6M
3		Explain with a neat sketch the working of lithium-bromide vapour	L2	C01	12M
		absorption system			
4		Explain with help of a neat sketch, the working of a steam jet refrigeration	L2	C02	12M
		system.			
5		Comparison between two fluid VAR system and three fluid VAR system	L4	C01	12M

Refrigeration & Air	conditioning	Ouestion bank
		Queblion built

2020-21

6	Illustrate the working principal of Electrolux refrigeration system	L2	C01	12M
7	Differentiate between vapour absorption and vapour compression	L4	C03	12M
	refrigeration systems.			
8	Describe the working of a vapour absorption refrigeration system with the	L1	C02	12M
	help of a neat sketch.			
9	Explain thermo-electric refrigeration system with sketch	L2	C01	12M
10	Describe the working of Vortex tube with a neat sketch and its merits and	L1	C03	12M
	demerits			

<u>UNIT –IV</u>

Introduction to Air Conditioning

1	a	What do you understand by the term psychrometry?	L1	C01	6M
	b	Define the following (i). Specific humidity (ii). Absolute Humidity	L1	C02	6M
2		A room 7m × 4m× 4m is occupied by an air-water vapour mixture at	L1	C04	12M
		380C. The atmospheric pressure is 1 bar and the relative humidity is			
		70%. Determine the humidity ratio, dew point, mass of dry air and mass			
		of water vapour. If the mixture of air-water vapour is further cooled at			
		constant pressure until the temperature is 100C. Find the amount of water			
		vapour condensed			
3	a	Define Sensible heat factor	L1	C01	5M
	b	With help of psychrometric chart, Explain the following processes	L5	C03	7M
		(i). Sensible hearting (ii) Sensible cooling			
4		Atmospheric air at 0.965 bar enters the adiabatic saturator. The wet bulb	L5	C01	12M
		temperature is 200C and dry bulb temperature is 310C during adiabatic			
		saturation process. Determine (i) humidity ratio of the entering air (ii)			
		vapour pressure and relative humidity at 310C and (iii) dew point			
		temperature.			
5	a	With help of psychrometric chart, Explain the Heating and	L5	C02	6M
		dehumidification processes			
	b	With help of psychrometric chart, Explain the cooling and	L5	C03	6M
		humidification processes			
6	a	Define relative humidity, absolute humidity	L1	C02	6M
	b	Define saturated air, degree of saturation	L1	C01	6M
7		Explain the procedure to draw a grand sensible heat factor line on a	L5	C01	12M
		psychrometric chart.			
8		Explain the concept of effective room sensible heat factor with neat	L5	C05	12M
		diagram.			
9		A room has a sensible heat gain of 24 KW and a latent heat gain of 5.2	L5	C01	12M
		KW and it has to be maintained at 26 $^{\circ}$ C DBT and 50 $^{\circ}$ RH.180 m ³ /			
		min of air is delivered to the room. Determine the state of supply of air.			

Refrigeration & Air	conditioning	Ouestion bank
item geración a im	comandining	Question built

2020-21

10	Define the following terms (i)Infiltration Forced ventilation	(ii)Natural ventilation	(iii)	L1	C02	12M

$\frac{UNIT-V}{Air\ Conditioning\ Systems\ and\ Distribution\ of\ Air}$

1		Explain year round air conditioning system with sketch	L2	C01	12M
2		Compare winter air conditioning system with summer air conditioning	L5	C02	12M
		system.	LJ	C02	1 Z IVI
3		With neat diagram explain the working of summer air conditioning	L2	C04	12M
3		system	L2	C04	1 2111
4		Explain the working of domestic refrigerator with a neat sketch	L2	C01	12M
5		1 0			
	a	Define the terms static and velocity pressure in a duct.	L1	C05	6M
	b	Define the term duct. Explain the needs	L1&	C02	6M
			L2	G0.4	107.5
6		Explain winter air conditioning system with sketch	L2	C04	12M
7	a	Derive an expression for continuity equation in ducts.	L4	C01	6M
	b	The main air supply duct of an air conditioning system is 800 mm X 600	L1	C02	6M
		mm in cross section and carries 300 m ³ / min of standard air. It branches			
		into two ducts of cross section 600 mm X 500 mm and 600 mm X 400			
		mm. If the mean velocity in the larger branch is 480 m / min. Find (i)			
		Mean velocity in the main duct and the smaller branch (ii) mean velocity			
		pressure in each duct.			
8		Following data refers to an air conditioning system to be designed for an	L1	C01	12M
		industrial process for hot and wet climate. Outside conditions 30 $^{\circ}$ C DBT			
		and 75 % RH, Inside conditions 20 ° C DBT and 60 % RH.			
		The require condition is to be achieved first by cooling and			
		dehumidifying and then by heating. If 20 m ³ of air is absorbed by the			
		plant every minute. Find (i) Capacity of the cooling coil in tonnes of			
		refrigeration (ii) Capacity of the heating coil in KW (iii) Amount of water			
		removed per hour. Take $h_1=81.8$ kj/kg, $h_2=34.2$ kj/kg, $h_3=42.6$ kj/kg,			
		$W_1=0.0202 \text{ kj/kg}, W_2=0.0088 \text{ kj/kg}, V_{s1}=0.886 \text{ m}^3/\text{kg}.$			
9	a	Why the ducts are used in an air conditioning system.	L1	C05	6M
	b	Which material is commonly used for making ducts in air conditioning	L1	C03	6M
		systems?			
10		An air conditioning plant is required to supply 60 m ³ of air per minute at	L5	C02	12M
		a DBT of 21°C and 55 % RH. The outside air is at DBT of 28 ° C and 60			
		% RH. Determine the mass of water drained and capacity of the cooling			
		coil. Assume the air conditioning plant first to dehumidify and then to			
		cool the air. Take W_1 =0.0142, W_2 =0.0084 kj /kg of dry air, V_{s2} =0.845 m ³			
		/ kg, h_1 =64.8 kj/kg, h_2 =42.4 kj/kg.			
		U, 1 - J O, 2 · J O			
L					

Refrigeration & Air conditioning Question bank 2020-21
Prepared by: Mr.P.Venkataramana & Mr. V. Kartikeyan
Page 6